“那么,如何製造超材料呢其原理是:用至少一种具有负磁导率的材料和至少一种具有负介电常数的材料,构建出特定的几何结构图案。通常,这些图案会以重复单元(称为 “单元结构”)的形式排列,並且每个单元结构的尺寸要小於它所作用的光的波长。从宏观层面来看,將具有负磁导率的材料与具有负介电常数的材料结合,就能得到一种具有负有效折射率的材料。“
“我们可以用你的 led 电脑显示器屏幕来举例说明这一原理。虽然显示器屏幕本身並非超材料,但它能帮助我们理解许多材料的工作方式。led 屏幕由大量像素组成,每个像素实际上是由红色、绿色和蓝色的 led 元件组合而成。通过像控制一组小型彩色灯泡的亮灭那样,控制红色、绿色和蓝色 led 元件的开关,一个能够產生几乎任何色调和亮度的像素就形成了。当我们从远处观察时,看到的就是此刻你正在观看的视频画面。你不会去关注每个像素具体的色调和亮度,更不会留意每个像素中各个 led 元件的工作状態,你所关心的只是能够看到这些神奇的动態画面。而这样的画面,在几代人之前还只是人们的幻想,在更早的祖先眼中,甚至可能被视为近乎魔法般的存在。“
“你的近几代祖先可能了解彩色灯光和电灯开关,但他们完全无法想像如何將这些技术提升到製造 led 屏幕所需的水平,也无法想像如何以足够快的速度控制这些元件,从而形成动態画面的视觉效果。超材料的原理与此类似:其单个组成元件的行为与我们所熟知的普通材料並无不同,但当这些元件与其他元件组合在一起形成整体时,超材料所表现出的特性就与传统材料大相逕庭了。“
“在超材料中,单个元件需要被构建成特定的几何形状,且这些元件的尺寸要小於该材料所要操控的光、辐射或声音的波长。这就意味著,直到最近,超材料的设计还只能用於操控无线电波和声波,而无法操控可见光。因为製造出能够与无线电波或声波的较长波长相匹配的元件要容易得多。微波是无线电波中波长最短的一种,其波长约为 1 毫米或更长,这比波长最长(约 1400 纳米)的近红外线还要长 7000 多倍。“
“製造出尺寸小於可见光(波长 390-700 纳米)甚至近红外线(波长 750 纳米 - 14 微米)波长的几何结构,是一项极具挑战性的任务。在这些光的波长范围內製造元件之所以困难,是因为原子的直径仅为 0.1-0.3 纳米,要在如此